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We employ large-scale quantum Monte Carlo simulations to study the magnetic ordering transition among
dilute magnetic moments randomly localized on the graphene honeycomb lattice, induced by long-ranged
Ruderman-Kittel-Kasuya-Yoshida interactions at low charge-carrier concentration. In this regime the effective
exchange interactions are ferromagnetic within each sublattice, and antiferromagnetic between opposite sub-
lattices, with an overall cubic decay of the interaction strength with the separation between the moments. We
verify explicitly, that this commensurability leads to antiferromagnetic order among the magnetic moments
below a finite transition temperature in this two-dimensional system. Furthermore, the ordering temperature
shows a crossover in its power-law scaling with the moments’ dilution from a low- to a high-concentration
regime.
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I. INTRODUCTION

Since the discovery of the single-layer hexagonal carbon
sheets of graphene, its fascinating physical properties have
stimulated a lot of research on the static and transport prop-
erties of fermions on the two-dimensional �2D� hexagonal
lattice.1,2 Soon after its discovery, the role of disorder effects
on graphene has opened up new research horizons.3,4 In par-
ticular, disorder-induced localized states5 and magnetism6–9

have attracted a lot of interest. For instance, it was found that
graphene’s electronic properties give rise to the efficient for-
mation of magnetic moments from adatoms located on the
graphene surface8 or simply from defects.6,7,9 Motivated by
such studies, we here consider a situation such as shown in
Fig. 1, where local moments are induced in a graphene sheet
by, for instance, adatoms or defects, each single magnetic
moment being associated with a particular lattice site of the
underlying lattice.10,11 At low carrier concentration, the low
density of states near the Dirac points suppresses the Kondo
effect and allows for the formation of magnetically ordered
states by the interaction between the localized moments and
the conduction electrons.10–12 Namely, they induce long-
ranged Ruderman-Kittel-Kasuya-Yosida �RKKY� exchange

interactions between the localized magnetic moments, de-
scribed by the Hamiltonian

H = �
i,j

Jij
RKKYSi · S j . �1�

The effective interaction Jij
RKKY, mediated by itinerant elec-

trons, strongly depends on the electronic properties at the
Fermi energy. While in typical metals an oscillating coupling
at 2kF is expected �kF being the Fermi wave vector�, decay-
ing as 1 /r2 in two dimensions �r being the relative distance
between impurities�, the semimetallic properties of graphene
lead to a different behavior.6,10,11 Indeed, the absence of an
extended Fermi surface leads to a cancellation of the 1 /r2

term and leaves the next term decaying as 1 /r3 without any
2kF oscillations. Furthermore, it was revealed in Refs. 10 and
11 that pairwise interactions are ferromagnetic �antiferro-
magnetic� among the same �different� sublattice on the bipar-
tite honeycomb lattice of graphene.

This means for the exchange couplings in Eq. �1�, that

Jij
RKKY = �ijJ��ri − r j��, J�r� =

J

r3 �2�

with J�0 and �ij =−1�+1� if i and j belong to the same
�different� sublattice.10,11 Here, ri denotes the �random� posi-
tion of the ith magnetic moment Si on the honeycomb lattice,
which we consider to be spin-1

2 quantum spins, in order to
explore the extreme quantum limit. Larger spin values of the
moments will not qualitatively change the results. The com-
mensurate nature of the RKKY interactions was linked to the
bipartiteness of the underlying lattice geometry.11 In a more
recent work,13 this general result was called into question for
graphene nanoribbons, due to the presence of zero-mode
contributions. In bulk graphene however, these corrections
vanish in the thermodynamic limit,13 thus recovering the
commensurate form of the interactions in Eq. �2�. In the fol-
lowing, we focus on the most basic model that contains the
main features of such exchange interactions �i.e., their com-
mensurate, long-ranged nature� between the magnetic mo-
ments, and leave for discussion at the end of the paper sev-

FIG. 1. �Color online� Magnetic moments localized on a honey-
comb lattice. Due to the commensurate nature of the long-ranged
exchange interaction, the moments order antiferromagnetically be-
low a finite transition temperature.
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eral aspects relevant to graphene, such as doping effects, a
finite extension of the localized moments, and structural de-
fects.

The remainder of this paper is organized as follows: in the
following section, we review some general results concern-
ing long-range order in low-dimensional systems. Then, we
present our numerical approach in Sec. III. The results of our
simulations are discussed in Secs. IV and V. Concluding re-
marks are made in Sec. VI while the Appendix provides
details about the relevant length and energy scales on the
diluted honeycomb lattice. In the Appendix, we furthermore
introduce the notion of an effective coordination number for
diluted magnetic moments, that will be convenient for the
discussion in Sec. V.

II. LONG-RANGE ORDER IN 2D

Starting from the effective exchange interactions of Eq.
�2� in Eq. �1�, we explore its consequences for the finite
temperature ordering transition between magnetic moments
on the honeycomb lattice. The stability of long-range mag-
netic order in d�2 systems with power-law decaying inter-
actions has been the subject of a large number of theoretical
studies in the past.14–27 Regarding the Heisenberg model
with 1 /r� interactions, the seminal paper of Mermin and
Wagner,14 proving the absence of finite-T spontaneous order
if ��d+2, was recently reconsidered by Bruno,23 who gave
stronger conditions, notably on the appearance of ferromag-
netism for oscillatory interactions. For instance, an interac-
tion of the form cos�k0r� /r� �k0�0� cannot lead to finite
temperature ferromagnetism if ��5 /2. For the case under
study here, Bruno’s result implies the absence of finite tem-
perature antiferromagnetic order for ��2d which does not
deviate from Mermin-Wagner’s results in d=2.

Early renormalization-group calculations on classical
O�n� models with 1 /rd+� couplings predicted15,16 a
�-dependent criticality with a finite ordering temperature for
��d: Tc� �d−�� / �n−1� when �→d.16 For instance, while
for ��d /2 exponents take exact “classical” values ��=2
−� ,	=1 /� ,
=1�, our case �=1 lies on the boundary of this
regime where logarithmic corrections are expected.15 In par-
ticular, the correlation length exponent turns out to be 	
=1+, which fulfills the Harris criterion28,29 	�2 /d. From
such a statement we expect on general grounds that clean and
disordered systems with power-law interactions display simi-
lar critical behaviors if ��1. We indeed find that the model
in Eq. �1� exhibits at finite temperature a phase transition to
an antiferromagnetically ordered Néel state, both in case of a
fully covered lattice and also for the case of diluted magnetic
moments, with apparently similar critical exponents.

In the following, we analyze in detail the dependence of
the ordering temperature on the concentration p of the mag-
netic moments. While in the realistic parameter regime the
magnetic moments will be dilute, i.e., p�1, we consider for
completeness the whole range up to �and including� the case
of full coverage p=1, where a magnetic moment resides on
every lattice site. For the full coverage case, we also per-
formed simulations for an underlying square lattice, in order
to explore more generally the magnetic ordering transition in

quantum antiferromagnets with long-range interactions in
two dimensions. While in previous works,20–22 the case of
solely ferromagnetic interactions on a square lattice geom-
etry has been analyzed, the current case and the effects of
dilution have not been considered thus far.

III. METHODS

For our study, we employed large-scale quantum Monte
Carlo �QMC� simulations based on the stochastic series ex-
pansion representation,30 with an improved diagonal update
scheme adapted to systems with long-ranged interactions.31

In addition, we used Walker’s method of alias32 in order to
speed up the algorithm.33 We performed simulations on finite
systems with Nl=2L2 lattice sites and linear system sizes
ranging up to L=192, depending on the concentration p of
the magnetic moments. For p�1, we performed statistical
averages over independent realizations of the moments’ dis-
tribution in a canonical ensemble, such that no sample-to-
sample fluctuations in the total number of moments N= p
�Nl result. Typically, we performed disorder averages over
several thousand realizations, and verified that the calculated
observables followed Gaussian distributions, as expected.
We always employed period boundary conditions and used
the minimum image convention for the 1 /r3-decaying ex-
change constants. For each choice of p and L, we measured
the staggered magnetization, obtained using the standard op-
erator

SAF =
1

N
�

i

N

�iSi, �3�

after performing the disorder averaging as

mAF = ���SAF
2 �	av. �4�

Here, �i= 1, depending on the sublattice to which spin i
belongs on the honeycomb lattice, �¯ � denotes the QMC
statistical mechanics expectation value for each realization of
disorder, and �¯ 	av the final disorder averaging. We also
calculated the Binder parameter,

Q = ��SAF
4 �	av/��SAF

2 �	av
2 . �5�

We then used a finite-size scaling analysis to extract the criti-
cal temperature and exponents from the finite-size data of
mAF and Q. More details about the finite-size scaling analysis
are provided below.

IV. FULL COVERAGE

As a useful starting point in the absence of any disorder,
we consider first the full coverage case p=1. In Fig. 2, we
present the QMC data for the temperature dependence of the
staggered magnetization for various system sizes. This data
shows, that a finite temperature ordering transition takes
place near T
1.3J. This is also evident from the behavior of
the specific heat CV, shown in the inset of Fig. 2. It also
exhibits pronounced finite-size effects that need to be ac-
counted for in order to extract the transition temperature.
Within the stochastic series expansion method, the specific
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heat is estimated from measuring the fluctuations in the se-
ries expansion order n based on the relation

CV =
1

N
��n2� − �n�2 − �n�� . �6�

As expected, we observe enhanced statistical noise at low
temperatures in this quantity. In order to obtain accurate es-
timates for the transition temperature, we thus turn to ana-
lyze quantities that directly quantify the magnetic order and
that are obtained with less statistical noise.

For this purpose, we calculated the Binder parameter Q
inside the transition region, for which the finite-size data is
shown in the inset of Fig. 3. The strongly moving crossing
points in the data for consecutive system sizes again indicate
significant finite-size effects that need to be taken into ac-
count in the further analysis. We thus employed a finite-size
scaling analysis including leading corrections to scaling34

used in several precision studies on critical properties in
quantum spin systems.35–37

It is based on a scaling ansatz for the Binder parameter

Q�t,L� = �1 + cL−��g�tL1/	 + dL−�/	� �7�

with the reduced temperature t= �T−TN� /TN and the scaling
function g. From this analysis, the critical exponent 	 is also
obtained. Furthermore, �, �, c, and d describe the leading
corrections to scaling, which are necessary in order to fit the
QMC data obtained here for a system with long-ranged in-
teractions on the limited system sizes available to our nu-
merical study. Following Ref. 35, we represent g up to fourth
order in a Taylor expansion �g�x�=g0+g1x+g2x2+g3x3

+g4x4	, and use bootstrapping in combination with a stan-
dard Levenberg-Marquardt nonlinear optimization algorithm
to perform the minimization procedure and fit the numerical
data to the above scaling from.

In Fig. 3, we show the resulting data collapse for the case
of p=1. We find that the QMC data can be fitted well to the
above scaling form, leading to an estimate of the transition
temperature of TN /J=1.2980.001 with three significant
digits. While the other fitting parameters are less constrained
by the finite-size data �see below�—as observed also in the
above-mentioned high-precision studies of short-range inter-
acting quantum spin systems35–37—we obtain from the finite-
size analysis robust estimates of TN, which is the quantity we
are mainly interested in for this study; in particular, since we
will analyze its dependence on the dilution p in the following
section. Furthermore, we obtain an estimate for the correla-
tion length critical exponent 	=1.040.02. This value is in
good agreement with the predicted value 	=1 from the
renormalization-group approach,15 the small deviations from
this prediction being attributed to logarithmic corrections in
the dependence of the correlation length on the reduced
temperature.15 However, given the restricted range of system
sizes available to our QMC study, we are not in a position, to
accurately account for these additional corrections. From the
same finite-size data, we also obtain estimates for �
=0.40.1 and �=0.60.1, which are less constrained
within the bootstrapping analysis. Similar as for 	, we expect
residual finite-size effects also on these values due to the
logarithmic corrections. These values are about a factor of
two smaller than the values given, e.g., in Ref. 35 for the
case of the quantum phase transition in bilayer Heisenberg
models, where however the expected universality class is
that of the three-dimensional Heisenberg transition instead of
the mean-field behavior expected here. From the fitting pro-
cedure, we obtain nonzero values for both prefactors of the
subleading finite-size corrections, d=−20.6 and c=
−0.110.06. This exhibits the necessity of including the
subleading finite-size corrections to the leading scaling be-
havior in Eq. �7�. The Taylor expansion coefficients of the
scaling function g can be estimated from the bootstrapping
analysis as g0=2.930.04, g1=0.180.04, g2=−0.10.01,
g3=−0.0010.008, and g4=0.0090.003. The last two co-
efficients remain more unconstrained than the other fitting
parameters. This indicates that g could also be represented
well by a second-order polynomial within the considered re-
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FIG. 2. �Color online� Temperature dependence of the staggered
magnetization mAF for different system sizes L=8, 16, 32, 40, 48,
56, and 64 for the occupation density p=1 �full coverage�. The inset
shows the temperature dependence of the specific heat CV for sys-
tem sizes L=16, 48, and 64. The dashed lines indicate the position
of the transition temperature as estimated from a finite-size scaling
analysis of the Binder parameter.
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FIG. 3. �Color online� Data collapse of the Binder parameters
for the full case p=1 in a finite-size scaling analysis. Here, t= �T
−TN� /TN denotes the reduced temperature. The inset shows the
Binder parameters Q for different system sizes in the vicinity of the
consecutive crossing points.
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gion close to TN with coefficients similar to those given
above.

We performed an analysis for p=1 also for the case of an
underlying square lattice, and obtained the transition tem-
perature in that case to be TN /J=1.8550.02, which is in
fact close to the values obtained from QMC simulations and
from using a Green’s-function decoupling for the fully ferro-
magnetic case.21,22 Furthermore, for the square lattice, we
obtain an estimate of 	=1.130.07, which within the error
bars agrees with the result for the honeycomb lattice, but
deviates more from the mean-field value. From the finite-size
scaling of mAF�L−�/	 at TN, we extract the ratio � /	
=0.520.04, which within error bars agrees with the value
� /	=1 /2 from renormalization-group calculations.15 The es-
timates for �=0.40.1 and �=0.60.1, that we obtain for
the square lattice, also agree within the error bars with the
result for the honeycomb lattice. Again, this is expected, as
the ordering transitions on both lattices belong to the same
universality class.

V. RANDOMLY DILUTED MOMENTS

After having considered the full coverage limit, we now
turn to the case of diluted magnetic moments, p�1. Also in
this case we do obtain a finite temperature ordering transi-
tion. For example, the QMC data for the staggered magneti-
zation at p=0.1 is shown in Fig. 4. The corresponding data
for the Binder parameter is shown in the inset of Fig. 5.
Performing the same finite-size scaling analysis as before,
we estimate the Néel temperature as TN /J=0.03570.0006
for p=0.1. The corresponding data collapse of the Binder
parameter is shown in the main panel of Fig. 5. The estimate
for the correlation length critical exponent 	=1.00.02 ap-
pears somewhat closer to the mean-field value while the re-
sults for �=0.40.1 and �=0.60.1 agree well with the
above values at p=1.

Proceeding in the same way for various values of p, we
eventually obtain the dilution dependence of the Néel tem-
perature shown in Fig. 6, which summarizes the main results
from our numerical study. Concerning the estimates for the

exponents 	, �, and �, we cannot observe, within statistical
errors, any systematic changes with p from their values in
the clean limit, which appears consistent with the discussion
in Sec. II.

On the other hand, the transition temperature shows a
strong dependence on p that we now analyze further. In the
range 0.3� p�1, this dependence is almost perfectly linear.
An extrapolation of the linear suppression would exclude
finite temperature magnetic order below p
0.18. However,
we find the low-p behavior of TN to deviate from this linear
behavior. In fact, as seen from the inset of Fig. 6, which
shows the same data on a log-log plot, below p
0.2, TN
exhibits an algebraic increase with p, scaling as

TN � p3/2, p � 0.2. �8�

In the following, we discuss the relevant energy scales be-
hind the different behavior of TN at high and low concentra-
tion of the magnetic moments.

On a two-dimensional lattice, dilute randomly distributed
magnetic moments are separated by an average distance that
scales as �r�� p−1/2 �on the honeycomb lattice �r�= p−1/2 /2,
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FIG. 4. �Color online� Temperature dependence of the staggered
magnetization mAF for different system sizes L=32, 64, 96, 128,
160, and 192 for the occupation density p=0.1. The dashed line
indicates the position of the transition temperature as estimated
from a finite-size scaling analysis of the Binder parameters.

0.03 0.04
T / J

1.5

2

2.5

3

Q

-20 -10 0 10 20

tL
1/ν

+ dL
-φ/ν

2

2.5

3

Q
/(

1+
cL

-ω
)

L=32
L=64
L=96
L=128
L=160
L=192

p=0.1

FIG. 5. �Color online� Data collapse of the Binder parameters
for p=0.1 in a finite-size scaling analysis. Here, t= �T−TN� /TN de-
notes the reduced temperature. The inset shows the Binder param-
eter Q for different system sizes taken in the vicinity of the con-
secutive crossing points.

0 0.2 0.4 0.6 0.8 1
p

0

0.4

0.8

1.2

1.6

T
N

/J

0.01 0.1 1
p

0.001

0.01

0.1

1

T
N

/J

∼p
3/2

FIG. 6. �Color online� Magnetic transition temperature TN as a
function of the occupation density p. The inset shows the same data
on a log-log plot. A power-law dependence proportional to p3/2 for
p�0.2 is indicated by the dashed line.

FABRITIUS, LAFLORENCIE, AND WESSEL PHYSICAL REVIEW B 82, 035402 �2010�

035402-4



cf. the Appendix� which defines a typical coupling strength
Jtyp=J��r��� p3/2. In the low-p regime, we thus find that the
Néel temperature scales with the characteristic energy scale
set by Jtyp. At higher concentrations, the scaling of TN with p
becomes more mean-field-like, namely, directly proportional
to the mean-field average coupling �see Eq. �A3� in the Ap-
pendix	 Javg

MF� p. This leads to the linear behavior in TN ob-
served at higher values of p. In this regime, the average
nearest-neighbor distance between the magnetic moments is
�r�
1 and does not vary much as a function of p. Its main
effect is the reduction in exchange paths, as the number of
bonds that each moment is associated with reduces linearly
with p. The crossover results near p
0.25, corresponding to
a concentration regime beyond which the average distance
becomes �r�
1, as shown in the Appendix.

The behavior of TN can be qualitatively understood also
with the help of a p-dependent effective coordination number
Zeff�p�, as defined in Eq. �A4�, which displays two distinct
regimes: for large dilution p�1 �i.e., for �r��1�, Zeff
1,
and the natural energy scale for the magnetic ordering is set
by the coupling value at the average distance �i.e., Jtyp�, be-
cause each moment has only a few neighbors to couple with
and thus TN
Jtyp. Increasing p, once Zeff becomes signifi-
cantly larger than one �i.e., once �r�
1� the relevant energy
scale which controls the ordering of the moments will be
controlled by the average Javg

MF, directly proportional to p. As
shown in the Appendix, the crossover between these two
regimes takes place near p
0.25. It is interesting to compare
such a concentration to the percolation threshold of the 2D
honeycomb lattice p�
0.697 �Ref. 38� where nearest-
neighbor interacting quantum spins lose long-range magnetic
order in the ground state.39 The absence of any feature at p�

in the present study is in fact consistent with the sizeable
value of the effective coordination number Zeff�p��
6.5.

VI. DISCUSSION AND CONCLUSIONS

Motivated by recent results on the properties of RKKY
interactions between localized magnetic moments on
graphene,10,11 we performed a systematic study of the finite
temperature ordering transition of dilute spin-1/2 magnetic
moments on the honeycomb lattice, induced by a commen-
surate long-ranged exchange interaction. We found that in
the low dilution regime, where the effective coordination
number is close to unity �i.e., the average separation �r��1�,
the Néel temperature scales with the typical coupling Jtyp
� p3/2. For larger occupations, the behavior crosses over to a
mean-field-like linear reduction in the Néel temperature from
its value in the full coverage case. We also presented esti-
mates for the critical exponents � and 	, which within sta-
tistical errors are consistent with the prediction from previ-
ous renormalization-group calculations for the ferromagnetic
classical O�3� model, given that additional logarithmic cor-
rections are expected.15 In our analysis, we considered the
extreme quantum limit of S=1 /2 magnetic moments. How-
ever, the physical picture will not change except that the
Néel temperature will scale with S�S+1� for higher quantum
spins. For the future, it will be interesting to explore the
critical properties of such diluted quantum magnets with

long-ranged exchange interactions in more detail, also con-
sidering other decay rates of the exchange interactions. This
would require the consideration of significantly larger lat-
tices. In fact, for the study of the critical properties of long-
ranged interacting classical Ising models, finite systems with
up to 106 spins were employed,24 i.e., more than a factor 100
larger systems than those accessible to the current investiga-
tion. Our main focus here was on the diluted case, relevant to
the physical situation in graphene.

In the case of graphene, the RKKY coupling, controlled
by the ratio between Coulomb repulsion U and bandwidth W,
is J
U2 /W
1 eV �Ref. 6� which for a moderate concen-
tration p
10−2 would give a critical temperature 
10 K. Of
course this estimate is based on a very simple model of lo-
calized pointlike magnetic impurities. A more realistic de-
scription should be able to incorporate �i� the spatial exten-
sion � of the defects, �ii� the holes/electrons doping effects,
and �iii� lattice distortions �ripples for instance�. Regarding
�i�, a finite area �2 for a defect is expected to move the
crossover concentration p
0.25 above which MF behavior
TN
 p occurs toward a lower value p
0.25 /�2. �ii� As al-
ready discussed in Ref. 6, holes/electrons doping shifts the
Fermi energy, thus leading to a finite Fermi wave vector kF


�nc �nc being the carriers concentration�. RKKY interac-
tions will oscillate with a wavelength �F
1 /�nc while the
average distance between moments is �r�
1 /�p. Therefore
the above analysis, which ignores 2kF oscillating terms is
expected to be valid provided nc� p. Alternatively, one ex-
pects the Néel order to be destroyed upon carrier doping in
graphene sheets. For instance, using an electric field to con-
trol the Fermi level would render it possible to induce a
transition from the Néel-ordered regime for kF��p onto a
more complex regime at kF
�p where competing interac-
tions, i.e., magnetic frustration associated with random dilu-
tion are expected to provide all the ingredients to achieve
spin-glass physics. We note that in the commensurate case at
half filling, the ferromagnetic and the antiferromagnetic ex-
change interactions actually have different prefactors.11

However, this does not lead to any frustration, and hence
including these prefactors will not destroy the finite tempera-
ture antiferromagnetic state. �iii� With respect to lattice dis-
tortions, it would be interesting to account for the character-
istic ripples in the graphene structure1,2 and explore its
consequences on the magnetic order, given the long-ranged
nature of the exchange interactions. This would extend a
recent study that considered this interplay between structural
and magnetic properties within an effective Ising model with
exponentially suppressed exchange interactions on the order
of several lattice spacings.40

Two directions appear feasible to experimentally probe
for the two-dimensional magnetism in graphene at finite tem-
peratures: using magnetic adatoms such as Mn, for instance,
or extrinsic defects41 that could be created by irradiation. In
addition to randomly distributed moments, it will be interest-
ing to explore the situation considered in Ref. 8, where the
magnetic moments are placed using scanning tunnel micro-
scope techniques onto specific lattice sites, and to examine
the magnetic states induced by the RKKY interactions. For
such studies, the effects of frustration could lead to exotic
magnetic phases, the study of which is however beyond the
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scope of the quantum Monte Carlo approach, due to the in-
famous sign problem.42 In that respect, future experiments on
graphene might even be employed as a quantum simulator
for such magnetic clusters.
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APPENDIX: ENERGY SCALES ON THE DILUTED
HONEYCOMB LATTICE

In order to gain insight into the role played by various
energy scales, we performed a numerical analysis on a L
=5000 diluted system, introducing a fraction p of magnetic
moments randomly on the honeycomb lattice. The nearest-
neighbor distance �i.e., the distance from a randomly chosen
moment to the closest other moment� obeys a probability
distribution �see the inset of Fig. 7� that at low concentra-
tions p is very well described by

P�r� = 2�rp exp�− �pr2� , �A1�

thus resulting in an average nearest-neighbor distance �r�

= p−1/2 /2, shown in Fig. 8. This leads to a typical coupling
strength Jtyp=J��r��� p3/2. It is interesting to compare this to
the average nearest-neighbor coupling Javg

nn , defined as

Javg
nn =� J�r�P�r�dr , �A2�

which, at low concentration p�1, turns out to be �i� much
larger than Jtyp and �ii� a linear function of p. On the other
hand, the mean-field average coupling,

Javg
MF =

1

N
�

i,j�i

J��ri − r j�� �A3�

compares well to Javg
nn at low doping. But while Javg

MF remains
linear �Javg

MF=2�ahex��3�p �Ref. 43�	 as p increases, Javg
nn ap-

proaches Jtyp for larger p. This p dependence of the different
energy scales is shown in Fig. 7.

The effective coordination number, defined as

Zeff = Javg
MF/Javg

nn , �A4�

clearly traces these two different regimes. For �r��1 �i.e.,
beyond p�1�, the system is highly diluted and Zeff
1 in-
creases only slightly with p, whereas once �r�
1 �i.e., be-
yond p
0.25�, the effective number of magnetic neighbors
increases much more rapidly, proportional to p. This differ-
ence in behavior directly follows from Fig. 8.
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